
Week 9 - Wednesday

 What did we talk about last time?
 JUnit

 Imagine you've got a class that stores time

 What are good tests for it?
 Let's write at least four JUnit tests for it

public class Time {
private int hour;
private int minute;
private boolean am;
// Methods
public Time(int hour, int minute, boolean am) {}
public String toString() {} // Example: "3:06 pm"
public int getHour() {}
public int getMinute() {}
public boolean isAm() {}
public void addMinutes(int minutes) {}
public void addHours(int hours) {}

}

 Debugging has some jargon:
 A failure is a deviation between actual behavior and intended

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A symptom is a characteristic of a failure that can be observed
 An error is something a person does (or doesn't do) that gives rise to

a fault

 Specification: Write a program to read an int, divide 10 by that
value (with integer division) and display the result (or an error
message if the input is 0)

int value = in.nextInt();
int result = 10/value;
System.out.println(result);

Bad Code 1
int value = in.nextInt();
if (value != 0) {

int result = 10/value;
System.out.println(result);

}

Bad Code 2

Trigger: Entering 0
Symptom: Crash
Fault: Leaving out a check

Trigger: Entering 0
Symptom: No error message
Fault: No output

 Debugging is using trigger conditions to identify and correct faults
 Steps of debugging

1. Stabilize: Understand the symptom and trigger condition so that the failure
can be reproduced

2. Localize: Locate the fault
▪ Examine sections of code that are likely to be influenced by the trigger
▪ Hypothesize what the fault is
▪ Instrument sections of code (with print statements or conditional breaks)
▪ Execute the code, monitoring the instrumentation
▪ Prove or disprove the hypothesis

3. Correct: Fix the fault
4. Verify: Test the fix and run regression tests
5. Globalize: Look for similar defects in the rest of the system and fix them

 Debug code is temporary output and input used to monitor what's going
on in the code

 Instead of printing out just numbers, add context information so that the
debug statements are clear

 Debug code is quick and dirty, useful when setting break points and
tracing execution with a debugger might be too much work to catch a
small issue

 There are logging tools that can print logging data at various levels
 Normally, nothing prints out
 Running the program in logging mode prints out important data
 Running the program in verbose mode prints out everything it can

 Debug output can go to stdout or stderr
 System.err (instead of System.out) prints to stderr in Java

 IntelliJ, Eclipse, Visual Studio, gdb and most fully-featured IDEs
provide debugging tools

 Typical debugging features:
 Setting breakpoints that will pause execution of the program when

reached
▪ Breakpoints can often be conditional, pausing only if certain conditions are met

 Executing lines of code one by one, stepping over method calls or
stepping into them and stepping out when you're done executing its
code

 Setting watches that display the current state of variables and members
 If you don't use your debugger, you're choosing to play the game

with one hand tied behind your back

 Students often rush to try to optimize before their code really works well
 "Premature optimization is the root of all evil."

 Performance is important, however, especially for systems software
 Guidelines:
 If a loop knows the answer before it's done iterating, use a condition to stop it

iterating as soon as it knows
 Instead of doing a computation repeatedly inside a loop, do the computation

once outside (if possible)
 Profiling tools show which methods (or sometimes even which lines) take

the most time to run
 Often, our intuition about which lines are costly is wrong

 Refactoring means changing working code into working code
 It can be done to improve the structure, the presentation, or the performance
 You should refactor when:
 There's duplication in your code
 Your code is unclear
 Your code smells:

▪ Comments duplicate code
▪ Classes only hold data (instead of operating on it)
▪ Information isn't hidden
▪ Classes are tightly coupled
▪ Classes have low cohesion
▪ Classes are too large
▪ Classes are too small
▪ Methods are too long
▪ switch statements are used instead of good object-orientation

 Renaming a variable or method
 Adding an explanatory variable
 If an expression is too long, storing a partial computation into a named variable

can help it be understood
 Inline temporary variable
 If a temporary variable is useless, just use the full expression (the opposite of the

previous)
 Break a method into two methods
 Combine two short methods into a single one
 Replace a conditional with polymorphism
 Instead of an if or a switch, behavior changes because different objects have

overridden methods with different behavior
 Move methods from child classes to parent classes

 Changing working code always risks breaking it
 To avoid problems, follow these steps:

1. Run tests and make sure they all pass before refactoring
2. Identify a refactoring
3. Make a small change that moves closer to the fully refactored

version
4. Run tests and fix what's broken
5. If the refactoring isn't done, go back to step 3
6. If the code still needs refactoring, go to step 2

 Waterfall views system testing as a phase after coding
 Unit testing must happen during coding, using (some) clear

box criteria
 Small units of code must be exercised thoroughly
 Only the developers themselves have the knowledge to do that

 Waiting to test after development has problems
 Few tests are written because "the job is done" and coders don't

want to find mistakes
 Poor tests are written because coders are focused on whatever they

were just writing

 System testing is testing of the whole product
 Both unit testing and integration testing of individual classes and

larger components should have been done by now
 Testing both functional and non-functional requirements

 System testing is necessary because:
 There could still be faults in the components
 Some things can't be fully tested without all the pieces together

 Alpha testing is the first stage of system testing
 Developers test behavior similar to what real users would do

 Beta testing has real users testing the product

 Unit tests (and some integration tests) are done by developers on their own
code, but system tests can involve code written by different people and teams
 Maybe there are misunderstandings between the teams of the format of input and

output
 Sub-system testing can use clear-box and black-box testing, but system testing

typically uses only black-box
 Testers might only know the requirements, not the implementation

 One system test might test the system in several different states while sub-
system tests tend to be more narrow

 System testing is focused on user interaction, so the nature of the product (e.g.,
web vs. desktop application) matters less

 Systems testing involves more people and is more likely to involve one team
blaming another

 Alpha testing and the two phases of beta testing are similar, but
there are some details that are different, summarized in this table

Alpha Testing
Beta Testing

Acceptance Testing Installation Testing

Personnel Testers Users Users

Environment Controlled Controlled Uncontrolled

Purpose Validation (Indirect) and Verification Validation (Direct) Verification

Recording Extensive Logging Limited Logging Limited Logging

 Alpha testing should validate that the product meets user needs
and verify that it does so correctly

 Validation is usually indirect because it doesn't have real users
 The software requirements specification or other documents are used to

check user needs
 Teams independent from the developers are often used for alpha

testing
 Developers have a bias toward not finding tests at this point

 Alpha testing happens in a controlled environment that tries to
simulate the real environment
 Failures can be isolated and recorded
 The product might be in a mode that does more logging than normal

 Functional alpha testing is based on the requirements listed in
the product specification

 To isolate failures, basic functionality is tested before more
complex functionality

 Operational profiles give information about how often
different use cases come up and the typical order of use cases
 Using these profiles, testers can make tests that simulate typical

usage

 Some non-functional requirements are development requirements
 Cost of the product
 Time the product takes to be made

 Development requirements generally can't be tested, but there are many kinds of non-
functional execution requirements that are testable

 Common non-functional execution tests:
 Timing tests time the amount of time needed to perform a function, sometimes using

benchmarks, standard timing tests
 Reliability tests try to determine the probability that a product will fail within a time interval:

mean time to failure
 Availability tests try to determine that probability that a product will be available within a time

interval: percent up time
 Stress tests try to determine robustness (operating under a wide range of conditions) and

safety (minimizing the damage from a failure)
 Configuration tests check the product on different hardware and software platforms

 Some user interface tests straddle the line between functional and
non-functional

 Tests that check the user interface are called usability tests or
human factors tests

 Internationalization or localization tests are a kind of usability
test that check translations and other cultural information like
currencies and the formatting of numbers, times, and dates

 Accessibility tests check whether the user interface works for all
people, even with significant disabilities
 There are guidelines for the kinds of disabilities that need support (low

visual acuity or color blindness)
 Testing often involves measuring the time needed to perform tasks

 Beta testing uses external testers, usually users from the
population who will use your product

 These users have the duty to record and report failures
 Acceptance testing is a kind of beta testing done by clients to

validate that the product meets their needs
 Done in a controlled environment, like the one alpha testing was done in

 Installation testing is a kind of beta testing using real users in
uncontrolled environments
 Instead of validation, the goal is to verify that the product works properly

in a (more) real environment
 Installation testing can be inefficient, since the users often do not give the

most detailed feedback

 Testing revolves around the software requirements specification
 Some requirements will be tested with unit tests
 Others will be tested with system tests
 Very few requirements are tested with integration tests

 Unit testing starts early in the implementation phase
 It needs to be good, since other testing doesn't happen until much later

 Since integration testing happens much later, placeholders for
methods that will be needed in the future, called stubs, are
common

 Alpha testing can't start until the end of the traditional process
 There isn't a working product until then

 In traditional processes, a test plan is used to map out system
testing

 Test plans include:
 Business and technical objectives of the test suite
 Test cases
 Review process and acceptance criteria
 Estimate of the size of the testing effort
 Schedule for the testing effort

 Scrum (like other agile processes) doesn't have a formal
requirements specification

 Integration testing and alpha testing happen every sprint
 Developers do unit testing, which is supposed to find

implementation failures
 Integration and system testing are supposed to find design

failure
 Another approach is to tie conditions of satisfaction for each

PBI to unit tests

 Some agile processes use daily build verification tests
 The product is automatically built and tested every day
 These tests are also called smoke tests
 These tests require developers to test their own code carefully before

committing it or risk breaking the whole daily test
 Since finished products are coming out all the time, beta

testing is only used on some sprints
 Sometimes only on fully-featured versions called release candidates

 Software that does not have GUI can be tested using tools
that are the same or similar to unit testing tools
 Sometimes custom test harnesses must be created

 Software with a GUI is much harder to test
 There are tools to record a series of mouse clicks, key presses, and

other interactions and play them back
 Other tools allow interactions to be described as scripts
 Yet other tools record the interactions as scripts
 But what happens when you change a button location?

 Tools called bug tracking systems allow testers to record, track, and
report test results

 These tools are built into many modern development tools
 GitHub has an Issues page for each repository
 You can open an issue when you find a bug
 Someone can close the issue when a commit fixes the bug

 Sometimes the issues in bug tracking systems are referred to as tickets
 A developer or a user (even a member of the public) can open a ticket when a

bug is found
 The ticket usually allows for discussion of the bug
 Sometimes the ticket is assigned to one or more developers to fix

 Some design patterns make it easier to do system testing
 The Command pattern is used to hold actions, so Command objects

can be issued directly instead of waiting for them to be triggered by
GUI events
 The Observer pattern and the Proxy pattern can also be useful

 Some libraries have built-in logging support that makes it
easier to instrument tests

 Using exceptions (instead of returning error codes) can also
provide flexible ways to build tests

 Deployment, maintenance, and support next Monday
 We'll also do review for Exam 2

 Read Chapter 11: Deployment, Maintenance, and Support for
next Monday

 Work on Project 3
 Study for Exam 2
 Next Wednesday

	COMP 3100
	Last time
	Questions?
	Project 3
	More JUnit
	JUnit practice
	Debugging
	Debugging jargon
	Debugging example
	Debugging
	Debug code
	Debuggers
	Performance optimization and tuning
	Refactoring
	Refactoring
	Common refactoring actions
	Keeping refactoring under control
	Testing and coding
	System Testing
	System testing
	Differences between system and sub-system testing
	Details of system testing
	Alpha testing
	Functional alpha testing
	Non-functional alpha testing
	User interface tests
	Beta testing
	Testing in traditional processes
	Test plan
	Testing in agile processes
	More on agile testing
	Test execution tools
	Test recording and reporting tools
	Preparing for system testing
	Upcoming
	Next time…
	Reminders

